메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장필식 (세한대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제16권 제4호
발행연도
2016.4
수록면
434 - 441 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 빅데이터 분석기법을 이용하여 트위터 이용자들을 대상으로 언어에 따른 자기노출과 경계불투과성에 대한 양상을 파악하였다. 6개월 동안 5천4백만 명의 트위터 이용자가 작성한 4억여 개의 트윗을 수집하였으며, 이들 중 트윗 수 상위 10개 언어권 이용자의 프로파일 및 관련 데이터를 조사하였다. 이를 통해 트위터 이용자의 언어가 이용자 프로파일, 프로파일 이미지, 지리정보, URL, 사용자 설명 등 자기정보 공개 항목의 공개비율과 경계불투과성에 미치는 영향을 분석하였다. 분석결과, 경계 불투과성과 자기노출비율(프로파일, 프로파일 이미지, URL, 이용자 설명, 지리정보)은 언어권에 따라 각각 통계적으로 유의한 (p<0.001) 차이가 있는 것으로 나타났다. 자기노출 비율과 평균 점수는 포르투갈어, 인도네시아어 및 스페인어 이용자가 아랍어, 일본어, 터키어, 한국어 이용자에 비해 높은 것으로 파악되었다. 또한 리트윗을 포함한 트윗 수가 많은 이용자일수록 경계 불투과성이 높아지는 것으로 나타났다.

목차

요약
Abstract
I. 서론
II. 이론적 배경
III. 연구 대상 및 방법
IV. 연구결과
V. 결론
참고문헌

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-004-002899986