메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태훈 (대전대학교) 권철홍 (대전대학교)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제8권 제2호
발행연도
2016.6
수록면
17 - 22 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper devises a model to diagnose physical fatigue using speech features. This paper presents a machine learning method through an SVM algorithm using the various feature parameters. The parameters used include the significant speech parameters, questionnaire responses, and bio-signal parameters obtained before and after the experiment imposing the fatigue. The results showed that performance rates of 95%, 100%, and 90%, respectively, were observed from the proposed model using three types of the parameters relevant to the fatigue. These results suggest that the method proposed in this study can be used as the physical fatigue diagnostic model, and that fatigue can be easily diagnosed by speech technology.

목차

Abstract
1. 서론
2. 사전에 수행된 육체피로 측정실험 요약
3. 육체피로 진단 모델
4. 실험 결과
5. 결론
참고문헌

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-700-000851203