메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
M.Thamarai (Madanapalle Institute of Technology and Science) R.Shanmugalakshmi (Government College of Engineering Coimbatore)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.11 No.5
발행연도
2016.9
수록면
1,404 - 1,411 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Video coding plays an important role in video transmission and storage applications. Today’s increasing order of multimedia applications led to a lot of research works in video coding in such a way that high compression ratio is achieved with the available bandwidth. Wavelet based image compression has witnessed great success in the past decade. Wavelet transform based motion compensated video codec performs better compression in order to meet the rate and distortion constraint in video transmission than the block based techniques. However, it is well known that the 2D DWT does not represent directional features of images efficiently. Lots of efforts have been put into multiscale directional representation. In this paper, video coding using directional transform DDWT is considered and its expansive nature is reduced by noise shaping algorithm. High compression ratio is achieved through the selection of optimal coefficients of DDWT using Multi Objective Particle Swarm Optimization (MOPSO) method. In this video coding technique, the objective functions of Entropy, Computation Time and Mean Square Error are considered for optimization with the constraints of bits per pixel and frame rate. The selected optimum coefficients are encoded using EZW method. The performance of the proposed method is compared with the standard 3D SPIHT coding.

목차

Abstract
1. Introduction
2. Video Coding using Multi Objective PSO
3. Optimal subband selection Process
4. Results
5. Conclusion
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-560-000981986