메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김상연 (한국교통대학교) 김경범 (한국교통대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.33 No.9
발행연도
2016.9
수록면
715 - 721 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, the classification rate of micro-cracks in silicon wafers was improved using a SVM. In case Ι, we investigated how feature data of micro-cracks and SVM parameters affect a classification rate. As a result, weighting vector and bias did not affect the classification rate, which was improved in case of high cost and sigmoid kernel function. Case II was performed using a more high quality image than that in case I. It was identified that learning data and input data had a large effect on the classification rate. Finally, images from cases I and II and another illumination system were used in case III. In spite of different condition images, good classification rates was achieved. Critical points for micro-crack classification improvement are SVM parameters, kernel function, clustered feature data, and experimental conditions. In the future, excellent results could be obtained through SVM parameter tuning and clustered feature data.

목차

1. 서론
2. SVM 분류기
3. 마이크로크랙 분류의 성능 실험
4. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-555-001144331