메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
하세용 (University of Toronto) 김동환 (서울대학교) 이준환 (서울대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제19권 제8호
발행연도
2016.8
수록면
1,564 - 1,573 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the spread of social media and mobile devices, people spend more time on online than ever before. As more people participate in various online activities, much research has been conducted on how to make use of the time effectively and productively. In this paper, we propose two methods which can be used to extract highlights and make searchable media indexes using online social data. For highlight extraction, we collected the comments from the online baseball broadcasting website. We adopted peak-finding algorithm to analyze the frequency of comments uploaded on the comments section of the website. For each indexes, we collected postings from soap opera forums provided by a popular web service called DCInside. We extracted all the instances when a character’s name is mentioned in postings users upload after watching TV, which can be used to create indexes when the character appears on screen for the given episode of the soap opera The evaluation results shows the possibility of the crowdsourcing-based media interaction for both highlight extraction and index building.

목차

ABSTRACT
1. 서론
2. 관련연구
3. 시청자 활동데이터를 활용한 영상콘텐츠 분석
4. 논의 및 향후 연구 방향
5. 결론
REFERENCE

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001136726