메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제6권 제1호
발행연도
2002.7
수록면
72 - 79 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 복잡한 배경의 영상에서 얼굴을 검출하는 효과적인 알고리즘을 제안한다. 제안된 알고리즘은 색상정보와 PCA-LDA(Principal Component Analysis - Linear Discriminant Analysis)에 의하여 구해진 고유얼굴 (eigenface)을 이용한다. 색상정보는 다른 어떤 방법보다 얼굴을 검출하는데 유용하게 사용된다. 고유얼굴은 전체학습 얼굴들의 평균정보를 포함하고 있기 때문에 얼굴 후보영역에 대하여 얼굴인지를 판별할 수 있는 기능을 갖는다. 전체적인 과정은 두 단계로 이루어진다. 첫 번째 단계는 영상내에서 색상정보를 이용하여 살색영역의 1차 얼굴 후보영역을 찾아 후보영역의 위치와 기를 결정한다. 두 번째 단계는 1차 얼굴 후보영역에 대하여 PCA-LDA에 의한 얼굴의 유사성을 측정하여 얼굴인지 아닌지를 판별한다. 제안한 검출 방법을 사용한 실험 결과, 색상정보를 사용하여 1차 얼굴 후보영역의 크기와 위치를 결정함으로써 검출속도의 향상을 가져올 수 있었다. 또한 PCA-LDA에 의한 고유얼굴과의 비교를 통해 복잡한 매경이 있는 영상에서도 97%의 검출률을 얻을 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-056-001402847