메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제13권 제2호
발행연도
2009.6
수록면
140 - 149 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인터넷을 통한 각종 침해사고 및 트래픽 폭주와 같은 현상이 급격하게 증가함에 따라 네트워크의 비정상적 상황을 조기에 탐지하기 위한 보다 능동적이고 진보적인 기술이 요구되고 있다. 본 논문에서는 캠퍼스 네트워크와 같이 트래픽이 주기적인 특성을 띠는 환경에서 Fisher 선형 분류법(FLD)을 사용하여 트래픽을 두 개의 그룹으로 분류하고, 네트워크에 유입되는 트래픽이 어떤 그룹에 속하는지를 판별하는 기법을 제안한다. 이를 위해 WISE-Mon이라 불리는 트래픽 분석 시스템을 개발하여 캠퍼스 네트워크의 트래픽을 수집하고 이를 모니터링해서 분석을 수행한다. 생성된 트래픽의 training set을 이용하여 비정상 트래픽의 범위를 판단하기 위한 chi-square distribution을 유도하고, FLD를 적용하여 유입되는 트래픽을 두 그룹으로 분리하기 위한 초평면 (hyperplane)을 만든다. 또한 네트워크 내의 트래픽 패턴이 시간이 지남에 따라 계속적으로 변하는 상황을 반영하기 위하여 self-learning 알고리즘을 적용한다. 캠퍼스 네트워크의 트래픽을 적용한 수학적 결과를 통하여 제안하는 기법의 정확성과 신뢰도를 보여준다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-056-001395098