메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박남용 (서울대학교) 박치완 (서울대학교) 강유 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.10
발행연도
2016.10
수록면
1,131 - 1,143 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
수십억 개 간선들로 구성된 대용량 그래프를 어떻게 효과적으로 압축할 수 있을까? 정점 재배치를 통해 인접 행렬의 0이 아닌 값들을 집중시키면 그래프를 효율적으로 압축할 수 있을 뿐 아니라 페이지랭크 등 여러 그래프 마이닝 알고리즘의 수행 속도를 개선할 수 있다. 최신 정점 재배치 기법인 SlashBurn 은 실세계 네트워크의 멱법칙 특성을 활용하는 실세계 그래프에 효과적인 방법이다. 하지만 단일 머신 기반으로 설계되어 대용량 그래프에 대해 처리 속도가 현저히 느려지거나 적용이 불가능한 한계가 있다. 본 논문에서는 이러한 한계를 극복하기 위한 분산 SlashBurn을 제안한다. 분산 SlashBurn은 대규모의 정점재배치 프로세스를 분산 처리하여 대용량 그래프를 기존 방법보다 훨씬 빠르고 확장성 있게 처리한다. 대용량 실세계 그래프들에 대한 실험 결과, 분산 SlashBurn은 단일 머신 SlashBurn보다 45배 이상 빠르게 동작하였고, 16배 이상 큰 그래프를 처리할 수 있었다.

목차

요약
Abstract
1. 서론
2. 배경지식
3. 분산 SlashBurn
4. 실험
5. 관련 연구
6. 결론 및 향후 연구
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0