메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
마종원 (Yonsei University) 우엔콩효 (Yonsei University) 이경도 (RDA) 허준 (Yonsei University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제34권 제5호
발행연도
2016.10
수록면
525 - 534 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
쌀은 오랜 기간 동안 남한 지역의 주식임과 동시에 농부들의 주 수입원이며, 농업 분야 관련 정책 수립을 위한 수학적인 쌀 생산량 추정 모델의 구축이 필요하다. 본 연구의 목적은 (1) 쌀 생산량 추정을 위한 회선신경망 모델의 구축과, (2) 최고의 성능을 보이는 회선신경망의 파라미터를 결정하는 것과, (3) 인공신경망 모델과의 비교를 통해 회선신경망의 성능을 평가하는 것이다. 각 모델의 입력데이터로는 2000~2013년도의 4~9월까지에 해당하는 기상자료와 MODIS 위성자료를 사용하였으며, 정확도 평가를 위해 교차 검증을 실시하였다. 회선신경망과 인공신경망은 쌀 생산 표본점을 대상으로 각각 36.10kg/10a, 48.61kg/10a와 시군구 지역을 대상으로 각각 31.30kg/10a, 39.31kg/10a의 RMSE를 보였다. 회선신경망 모델은 인공신경망 모델보다 우수한 성능을 보였으며, 본 연구를 통해 쌀 생산량 추정 분야에 대한 회선신경망 모델의 적용 가능성을 확인할 수 있었다.

목차

Abstract
초록
1. 서론
2. 데이터 수집 및 전처리
3. 쌀 생산량 추정 모델 및 정확도 평가 방법
4. 결과 분석
5. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-533-001641140