메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
성원경 (LG전자) 안재영 (연세대학교) 이중정 (연세대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제25권 제1호
발행연도
2020.2
수록면
13 - 33 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 자모 단위의 임베딩과 회선 신경망을 활용한 한국어 감성 분석 알고리즘을 제안한다. 감성 분석은 텍스트에서 나타난 사람의 태도, 의견, 성향과 같은 주관적인 데이터 분석을 위한 자연어 처리 기술이다. 최근 한국어 감성 분석을 위한 연구는 꾸준히 증가하고 있지만, 범용감성 사전을 사용하지 못하고 각 분야에서 자체적인 감성 사전을 구축하여 사용하고 있다. 이와 같은 현상의 문제는 한국어 특성에 맞지 않게 형태소 분석을 수행한다는 것이다. 따라서 본 연구에서는 감성 분석 절차 중 형태소 분석을 배제하고 초성, 중성, 종성을 기반으로 음절벡터를 생성하여 감성 분석을 하는 모델을 개발하였다. 그 결과 단어 학습 문제와 미등록 단어의 문제점을 최소화할 수 있었고 모델의 정확도는 88% 나타내었다. 해당 모델은 입력 데이터의 비 정형성에 대한 영향을 적게 받으며, 텍스트의 맥락에 따른 극성 분류가 가능하게 되었다. 한국어 특성을 고려하여 개발된 본 모델이 한국어 감성 분석을 수행하고자 하는 비전문가에게 보다 쉽게 이용될 수 있기를 기대한다.

목차

초록
ABSTRACT
1. 서론
2. 개념적 배경
3. 알고리즘 설계 및 개발
4. 성능 평가
5. 결론
References

참고문헌 (62)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000427723