메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노기섭 (Republic of Korea Air Academy) 오하영 (Ajou University) 이재훈 (Seoul National University)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제22권 제1호
발행연도
2018.1
수록면
17 - 25 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 ICT기술의 발전과 스마트 기기의 급격한 보급으로 엄청난 양의 정보가 생성되고 있다. 추천 시스템은 과도한 정보제공(information overload)으로부터 정보 수용자의 적절한 판단을 도와주고, 정보 제공자에게는 기업의 이윤과 업체홍보 효과를 증대 시킬 수 있는 해결책으로 등장하였다. 추천 시스템은 다양한 접근법으로 구현이 가능하지만, 소셜 네트워크 정보로 성능을 향상시킬 수 있는 방법으로 제시되었다. 그러나 추천 시스템 내의 사용자간에 형성되는 신뢰 클러스터의 정보를 활용하는 방안은 연구되지 못하였다. 본 논문에서는 온라인 리뷰에서 생성되는 클러스터에서 클러스터 내부 객체 간 영향성과 트러스터-트러스티 간 정보를 이용하여 추천 시스템의 성능을 향상시키는 방식을 제안하였다. 제안하는 방식을 구현하고 실제 데이터를 활용하여 실험한 결과 기존의 방식들보다 예측 정확도가 향상됨을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 시스템 설계
Ⅳ. 실험 및 성능측정
Ⅴ. 결론
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001755029