메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
추상현 (국립금오공과대학교) 이현수 (국립금오공과대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제26권 제5호
발행연도
2016.10
수록면
335 - 342 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기 구축되어있는 베이지안 네트워크에서 다이나믹한 환경 변화가 발생 할 때, 관련된 베이지안 네트워크의 파라미터는 새롭게 형성된 데이터의 패턴에 적응하여 새로운 파라미터로 변경되어야 한다. 이때, 새로운 파라미터는 베이지안 네트워크의 인과관계를 고려하여 변경되어야 한다. 본 논문에서는 Expectation Maximization(EM)알고리즘과 Meta-Heuristics 기법 중 하나인 Harmony Search(HS)알고리즘을 이용한 다이나믹한 파라미터 업데이트 프레임웍을 제안한다. 일반적으로, EM 알고리즘은 숨겨진 파라미터를 추정하는데 유효한 알고리즘이지만 지역 최적값에 수렴한다는 단점을 가지고 있다. 이 문제를 해결하기 위해서 본 논문은 Maximum Likelihood Estimator(MLE)의 파라미터가 글로벌 최적값을 지향하도록 하기 위하여 메타휴리스틱 방법론의 하나인 HS를 적용한다. 제안된 방법은 EM 알고리즘의 단점을 보완하고 글로벌 최적값에 수렴하는 MLE의 파라미터를 추정하여 다이나믹하게 변화하는 환경에서도 사용 가능한 베이지안 네트워크의 학습 및 전파프레임웍을 제시한다.

목차

요약
Abstract
1. 서론
2. 배경 및 관련 연구
3. EM 알고리즘 및 Harmony Search 기반 베이지안 네트워크 학습 프레임웍
4. 실험 및 분석 결과
5. 결론 및 향후 발전방향
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001612702