메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ngo Phong Nguyen (Can Tho University of Technology) Trong Nghia Phan (Can Tho University) Quang Hieu Ngo (Can Tho University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2016
발행연도
2016.10
수록면
1,093 - 1,098 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A Fuzzy-PD control strategy for an offshore container crane is investigated in this study. The offshore crane is used to handle containers between a mega container ship (called the “mother ship”) and a smaller ship (called the “mobile harbor”), which is equipped with container crane. The concept of the mobile harbor is a floating form that has the capability of transferring cargo to the local harbor from a large ship that is anchored in a nearby sea, thereby minimizing the port congestion and also eliminating the need of expanding outwards. The control objective during the loading and unloading process is to keep the payload in the desired region in the presence of ship motions. A new control strategy which is a combination of a Fuzzy controller, PD controller and compensation mechanism, is proposed as well. A Fuzzy controller plays a main role in creating the appropriate voltage, based on the dynamics and knowledge of an experienced designer, for guarantees not only prompt suppression of load swing but also accurate control of container crane position. In addition, a classical PD controller is used to tune the value of state variables into suitable range before becoming the inputs of the fuzzification process. This control scheme guarantees the stability of the closed-loop system. Simulation and experimental results are provided to verify the effectiveness of the proposed control system for offshore container cranes.

목차

Abstract
1. INTRODUCTION
2. MODELING OF A SHIP-MOUNTED CONTAINER CRANE
3. DESIGN OF ANTISWAY CONTROLLER
4. SIMULATION AND EXPERIMENTAL RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001867129