메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ki-Hoon Kwon (Kyungpook National University) Seung-Hyun Lee (Kyungpook National University) Min Young Kim (Kyungpook National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2016
발행연도
2016.10
수록면
89 - 92 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In image guided surgery, image-to-patient registration process is required to use actively pre-operative images such as CT and MRI during operation. One method that utilizes 3D surface measurement data of patients among several image-to-patient registration methods is dealt with in this paper. After a hand held 3D surface measurement device measures the surface of patient’s surgical site, this 3D data is registered to CT or MRI data using computer-based optimization algorithms. However, general ICP algorithm has some disadvantages that it takes a long converging time if a proper initial location is not set up and also suffers from local minimum problem during the process. Though this problem can be avoided by manual set-up of the proper initial location before performing ICP, it has also critical disadvantages that an experienced user has to perform the method due to algorithms’ sensitivity, and also takes another long time. In this paper, we propose an automatic method that can accurately find the proper initial location without manual intervention. The proposed method finds the proper initial location for ICP by converting 3D data to 2D curvature images and performing image matching automatically. It is based on the characteristics that curvature features are robust to the rotation, translation, and even some deformation.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. RESULTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001868015