메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jaehyeon Park (Seoul National University) H.Jin Kim (Seoul National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2016
발행연도
2016.10
수록면
273 - 277 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Differential Dynamic Programming (DDP) can effectively solve an optimal control problem; however, it cannot deal with temporally changing environments such as an appearance of a moving obstacle. In this paper, we present the segmentation of locally optimal trajectories under an environment with a moving obstacle. The agent finds locally optimal trajectories by sampling Gaussian samples according to its existing incomplete policy. After one episode of the agent movement is over and if this episode performs better than the previous one, the policy is reinforced by learning the trajectories of the episode. We show that the algorithm successfully generates the locally optimal trajectories to avoid moving obstacles, and the performance of the resulting policy is improved as the episode progresses. These results would help apply reinforcement learning to robotics in two respects: learning the policy with a small number of iteration by reusing DDP policy, and taking action against changing environments. Because a real-world robot has to deal with a variant environment and has a limit of iterations for policy learning, these two results would help to settle the reinforcement learning issues for robotics.

목차

Abstract
1. INTRODUCTION
2. DIFFERENTIAL DYNAMIC PROGRAMMING(DDP)
3. SIMULATION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001868308