메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김세영 (Pusan National University) 류광렬 (Pusan National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제22권 제1호(통권 제154호)
발행연도
2017.1
수록면
23 - 32 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
We can obtain useful knowledge from data by using a subgroup discovery algorithm. Subgroup discovery is a rule model learning method that finds data subgroups containing specific information from data and expresses them in a rule form. Subgroups are meaningful as they account for a high percentage of total data and tend to differ significantly from the overall data. Subgroup is expressed with conjunction of only literals previously. So, the scope of the rules that can be derived from the learning process is limited. In this paper, we propose a method to increase expressiveness of rules through internal disjunctive representation of attribute values. Also, we analyze the characteristics of existing subgroup discovery algorithms and propose an improved algorithm that complements their defects and takes advantage of them. Experiments are conducted with the traffic accident data given from Busan metropolitan city. The results shows that performance of the proposed method is better than that of existing methods. Rule set learned by proposed method has interesting and general rules more.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Related Works
Ⅲ. Internal Disjunctive Rule Learning
Ⅳ. Proposed Subgroup Discovery Algorithm
Ⅴ. Experimental Results
Ⅵ. Conclusion
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-002118146