메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제54권 제1호 (통권 제470호)
발행연도
2017.1
수록면
96 - 110 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
기존의 차량 검출 연구들의 대부분은 일반렌즈 또는 광각렌즈를 가지는 후방 카메라를 사용하기 때문에 사각지대가 넓으며, 영상에 노이즈 및 다양한 외부 환경에 취약한 부분이 있다. 본 논문에서는 사각지대를 줄이고, 노이즈 및 가혹한 외부 환경에서도 인식이 가능한 검출 방법을 제안한다. 먼저 광각렌즈보다 더 넓은 화각을 가진 어안렌즈를 이용해 사각지대를 최소화한다. 렌즈의 화각이 커진 만큼 비선형 방사왜곡도 커지게 되므로, 정확한 영상 결과를 얻기 위해서 왜곡 상수 초기화와 최적화를 실시한 후 Calibration을 이용하였다. 그리고 Calibration과 동시에 원본 영상을 분석하여 안개가 자욱한 상황과 갑작스러운 조도 변화로 인해 생기는 명순응, 암순응 현상에 의한 시야 방해 상황에서도 인식이 가능하도록 안개 제거와 밝기 보정을 이용하였다. 안개 제거는 일반적으로 계산 시간이 매우 크다. 따라서 계산 시간을 줄이기 위해 대표적인 안개 제거 알고리즘인 Dark channel prior를 기반으로 안개를 제거하였다. 밝기 보정 시에는 Gamma correction을 이용했고, 보정에 필요한 Gamma value를 결정하기 위해 영상에 대한 밝기 및 명암 평가가 수행하였다. 평가는 영상의 전체가 아닌 일부분을 이용하여 할애되는 계산시간을 줄였다. 밝기 및 명암 값이 계산되면 그 값을 이용해 Gamma value를 결정하고 전체 영상에 보정을 실시하였다. 그리고 밝기 보정과 안개 제거로 나누어 병렬 처리한 후, 영상을 하나로 정합함으로써 전 처리 과정의 연산시간을 줄였다. 이후 보정된 영상으로부터 특징추출법인 HOG를 이용하여 차량을 검출하였다. 그 결과 본 논문에서 제안하는 방법의 영상 보정을 이용한 차량 검출을 하는데 1프레임당 0.064초가 걸렸으며, 기존의 차량 검출 방법에 비해 7.5%의 향상된 검출률을 얻었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
REFERENCES

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-002134097