메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권선영 (서울대학교) 이병한 (서울대학교) 박승현 (서울대학교) 조정희 (서울대학교) 윤성로 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제23권 제4호
발행연도
2017.4
수록면
250 - 255 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
유전체 데이터의 급증 및 정밀의료 등 응용 분야 확대에 따라 유전체 데이터베이스의 효율적 관리에 대한 중요성이 커지고 있다. 전통적인 압축 기법을 통해 유전체 데이터를 압축할 경우, 압축효과는 크지만, 압축된 상태에서 데이터베이스를 비교하거나 검색하는 등의 작업이 용이하지 않게 된다. 유전체 데이터 분석에 소요되는 시간은 데이터베이스에 존재하는 시퀀스 수에 비례하며, 중복되거나 유사한 시퀀스가 다수 존재한다는 점에 착안하여, 본 논문에서는 유전체 데이터베이스 상에 존재하는 유사 시퀀스를 제거함으로써 전체 데이터베이스 크기를 줄이는 기법을 제안한다. 실험을 통해 시퀀스 유사도 1% 기준으로도 전체의 약 84% 시퀀스가 제거되며, 약 10배 빠른 분류분석이 가능함을 보인다. 또한 큰 폭의 압축효과에도 불구하고, 범주 다양성 및 분류 분석 등에 미치는 변화가 미미함을 확인함으로써, 시퀀스 유사도 기반의 제안 압축 기법이 유전체 데이터베이스 압축에 효과적인 방법임을 제시한다.

목차

요약
Abstract
1. 서론
2. 본론
3. 실험 결과
4. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0