메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이동현 (서강대학교) 임민규 (서강대학교) 박호성 (서강대학교) 김지환 (서강대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제18권 제1호
발행연도
2017.2
수록면
93 - 99 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Long Short Term Memory (LSTM) Recurrent Neural Network (RNN)를 이용한 hybrid 방법은 음성 인식률을 크게 향상시켰다. Hybrid 방법에 기반한 음향모델을 학습하기 위해서는 Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM)로부터 forced align된 HMM state sequence가 필요하다. 그러나, GMM-HMM을 학습하기 위해서 많은 연산 시간이 요구되고 있다. 본 논문에서는 학습 속도를 향상하기 위해, LSTM RNN 기반 한국어 음성인식을 위한 end-to-end 방법을 제안한다. 이를 구현하기 위해, Connectionist Temporal Classification (CTC) 알고리즘을 제안한다. 제안하는 방법은 기존의 방법과 비슷한 인식률을 보였지만, 학습 속도는 1.27 배 더 빨라진 성능을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 실험 및 평가
Ⅳ. 결론
참고문헌

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-002356177