메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김지영 (서울대학교) 한다현 (서울대학교) 김종권 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.5
발행연도
2017.5
수록면
553 - 558 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
빅데이터의 공급이 늘어남에 따라, 이로부터 유용한 정보를 추출해내기 위한 학계와 업계의 연구가 활발히 진행 되고 있다. 특히 분석한 정보의 특징과 함께, 정보 검색 시 검색자의 의도를 함께 반영하여 정보를 여과해 주는 것이 대부분의 연구의 최종 목표이다. 정확하게 분석된 자료는 기업이 제공하는 서비스에 대한 사용자의 충성도를 높여주고, 사용자 스스로 보다 효율적이고 효과적으로 정보를 이용할 수 있게 된다. 본 논문에서는 가장 높은 빈도로 사용되는 검색 분야인 기사를 검색하는 경우의 정확도를 높이기 위해, 관련 데이터를 TF-IDF, 결정 트리, 코사인 유사도, 단순 베이지안 분류기 등의 다양한 측도 방법으로 평가해 보고, 이를 분석하였다. 또한, 분석 결과를 바탕으로 가장 적합한 측도 방법을 제안한다.

목차

요약
Abstract
1. 서론
2. 방법론
3. 실험
4. 이전 연구
5. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0