메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박상훈 (가톨릭대학교) 김하영 (가톨릭대학교) 이다빛 (가톨릭대학교) 이상국 (가톨릭대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.6
발행연도
2017.6
수록면
587 - 594 (8page)
DOI
10.5626/JOK.2017.44.6.587

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근, 동작 상상(Motor Imagery) Electroencephalogram(EEG)를 기반으로 한 Brain-Computer Interface(BCI) 시스템은 의학, 공학 등 다양한 분야에서 많은 관심을 받고 있다. Common Spatial Pattern(CSP) 알고리즘은 동작 상상 EEG의 특징을 추출하기 위한 가장 유용한 방법이다. 그러나 CSP 알고리즘은 공분산 행렬에 의존하기 때문에 Small-Sample Setting(SSS) 상황에서 성능에 한계가 있다. 또한 사용하는 주파수 대역에 따라 큰 성능 차이를 보인다. 이러한 문제를 동시에 해결하기 위해, 4-40Hz 대역 EEG 신호를 9개의 필터 뱅크를 이용하여 분할하고 각 밴드에 Regularized CSP(R-CSP)를 적용한다. 이후 Mutual Information-Based Individual Feature(MIBIF) 알고리즘은 R-CSP의 차별적인 특징을 선택하기 위해 사용된다. 본 연구에서는 대뇌 피질의 운동영역 부근 18개 채널을 사용하여 BCI CompetitionIII DatasetⅣa의 피험자 다섯 명(aa, al, av, aw 및 ay)에 대해 각각 87.5%, 100%, 63.78%, 82.14% 및 86.11%의 정확도를 도출하였다. 제안된 방법은 CSP, R-CSP 및 FBCSP 방법보다 16.21%, 10.77% 및 3.32%의 평균 분류 정확도 향상이 있었다. 특히, 본 논문에서 제안한 방법은 SSS 상황에서 우수한 성능을 보였다.

목차

1. 서론
2. 실험 방법
3. 데이터 및 실험
4. 결과 및 논의
5. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0