메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이진우 (국민대학교) 이현준 (인텔 코리아) 김준호 (국민대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제23권 제3호
발행연도
2017.7
수록면
31 - 38 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 도심 영상에 대해 맨하탄 좌표계를 추정하는 합성곱 신경망(Convolutional Neural Network) 기반의 시스템을 제안한다. 도심 영상에서 맨하탄 좌표계를 추정하는 것은 영상조정, 3차원 장면 복원 등 컴퓨터 그래픽스 및 비전 문계 해결의 기본이 된다. 제안하는 합성곱 신경망은 GoogLeNet[1]을 기반으로 구성한다. 합성곱 신경망을 훈련하기 위해 구글 스트리트 뷰 API로 영상을 수집하고 기존 캘리브레이션 방법으로 맨하탄 좌표계를 계산하여 데이터셋을 생성한다. 장면마다 새롭게 합성곱 신경망을 학습해야하는 PoseNet[2]과 달리, 본 논문에서 제안하는 시스템은 장면의 구조를 학습하여 맨하탄 좌표계를 추정하기 때문에 학습되지 않은 새로운 장면에 대해서도 맨하탄 좌표계를 추정한다. 제안하는 방법은 학습에 참여하지 않은 구글 스트리트 뷰 영상을 검증 데이터로 테스트하였을 때 3.157°의 중간 오차로 맨하탄 좌표계를 추정하였다. 또한, 동일 검증 데이터에 대해 제안하는 방법이 기존 맨하탄 좌표계 추정 알고리즘[3]보다 더 낮은 중간 오차를 보이는 것을 확인하였다.

목차

요약
Abstract
1. 서론
2. 합성곱 신경망을 이용한 맨하탄 좌표계 추정
3. 학습 데이터
4. 실험
5. 결론 및 향후계획
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0