메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
길종인 (강원대학교) 김만배 (강원대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제23권 제2호
발행연도
2018.3
수록면
186 - 196 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
본 논문에서는 객체를 추적하기 위해 합성곱 신경망 모델을 이용한 온라인 추적 기법을 제안한다. 오프라인에 모델을 학습시키기 위해서는 많은 수의 훈련 샘플이 필요하다. 이러한 문제를 해결하기 위해, 학습되지 않은 모델을 사용하고, 실험 영상으로부터 직접 훈련 샘플을 수집하여 모델을 갱신한다. 기존의 방법들은 많은 훈련 샘플을 획득하여 모델의 학습에 사용하였지만, 본 논문에서는 적은 수의 훈련 샘플만으로도 객체의 추적이 가능함을 증명한다. 또한 컬러 정보를 활용하여 새로운 손실 함수를 정의하였고 이로부터 잘못 수집된 훈련 샘플로 인해 모델이 잘못된 방향으로 학습되는 문제를 방지한다. 실험을 통해 4가지 비교 방법과 동등하거나 개선된 추적 성능을 보임을 증명하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 훈련 샘플 수집
Ⅲ. CNN 모델 학습
Ⅳ. 객체추적
Ⅴ. 실험결과
Ⅵ. 결론
참고문헌 (References)

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-567-001906124