메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍은빈 (포항공과대학교) 전준호 (포항공과대학교) 조성현 (대구경북과학기술원) 이승용 (포항공과대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제23권 제3호
발행연도
2017.7
수록면
95 - 103 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 딥 러닝(deep learning)을 이용하여 입력 영상의 기울어진 정도를 측정하고 수평에 맞게 바로 세우는 방법을 제시한다. 기존 방법들은 일반적으로 영상 내에서 선분, 평면 등 하위 레벨의 특징들을 추출한 후 이를 이용해 영상의 기울어진 정도를 측정한다. 이러한 방법들은 영상 내에 선이나 평면이 존재하지 않는 경우에는 제대로 동작하지 않는다. 본 논문에서는 대규모 데이터 셋을 통해 영상의 다양한 특징들에 대해 학습 가능한 Convolutional Neural Network (CNN)를 이용하여 인물이나 복잡한 배경으로 구성된 기울어진 영상에 대해서도 강인하게 동작하는 프레임워크를 제시한다. 또한, 네트워크에 가변 공간적 (adaptive spatial) pooling 레이어를 추가하여 영상의 다중 스케일 특징을 동시에 고려할 수 있게 하여 영상의 기울어진 정도를 측정하는 성능을 높인다. 실험 결과를 통해 다양한 콘텐츠를 포함한 영상의 기울어짐을 높은 정확도로 바로 세울 수 있음을 확인할 수 있다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. CNN을 이용한 영상 기울기 측정
4. 실험결과
5. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0