메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
권혁진 (서울대학교) 조남익 (서울대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2019 추계학술대회
발행연도
2019.11
수록면
104 - 107 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 Convolutional Neural Network (CNN)에 영상이 아닌 비학습적 알고리즘으로부터 도출된 특징맵을 입력함으로써 영상처리 성능 및 계산자원 효율성 향상을 이룬 보고가 늘어나고 있다. 본 논문에서는 이러한 점을 바탕으로 가보웨이블릿 특징맵을 입력으로 하는 CNN 기반 영상잡음제거기를 제안하고 그 성능 및 특징을 고찰하였다. 즉 기존의 CNN 에서는 일반적인 영상을 입력하는 반면에 본 논문에서는 영상으로부터 추출한 웨이블릿 계수들을 입력하였고, 이를 통하여 기존의 방법에 비하여 성능을 유지하면서 계산량을 줄일 수 있는 가능성을 확인하였다.

목차

요약
1. 서론
2. 네트워크 구조
3. 실험 방법 및 결과
4. 고찰
5. 결론 및 제언
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000348832