메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최종호 (강남대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제10권 제4호
발행연도
2017.8
수록면
288 - 294 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근들어 CNN(Convolutional Neural Network)을 이용한 딥러닝 기술이 영상인식 등의 분야에서 널리 활용되고 있다. CNN에서 승산과 가산으로 수행되는 컨볼루션 처리는 단순한 연산이지만 하드웨어로 구현하는 데 문제가 되는 것은 승산을 수행하는데 필요한 계산시간이다. 컴퓨팅 파워의 사용에 문제가 없는 응용분야에서는 문제가 되지 않지만 임베디드용 딥러닝 시스템 등의 구현을 위한 하드웨어 칩설계에서는 많은 제한이 있다. 따라서 본 논문에서는 그레이스케일 영상을 2진영상의 중첩으로 표현한 후, 병렬로 가산만을 이용하여 컨볼루션을 수행하는 병렬가산 알고리즘을 제안하였다. 본 논문에서 새롭게 제안한 알고리즘의 유용성을 확인하기 위한 실험을 통해 처리시간의 감소가 가능한 병렬가산 방식으로 컨볼루션을 수행할 수 있음을 확인하였다.

목차

요약
Abstract
1. 서론
2. 그레이스케일 영상 분해
3. 병렬가산 컨볼루션 알고리즘
4. 실험
5. 결론
REFERENCES

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0