메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제12권 제2호
발행연도
2001.12
수록면
1 - 10 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
신경망은 점차 분류 및 함수추정을 위한 현대 통계적 방법론으로 부각되고 있다. 신경망은 특히 선형 회귀함수를 일반화시키는 유연한(flexible)방법을 제공하며 일반적 비선형 함수를 모수화하는 방법으로 간주된다. 본 논문에서는 함수추정을 위한 신경망을 생각한다. 신경망이 훈련자료를 과대적합하는 것을 피할 수 있도록 하는 간단한 방법은 정칙화(regularization)이다. 신경망에서는 정칙화를 위해 주로 가중치감소법(weight decay method)을 사용한다. 함수추정을 위해 가중치감소 신경망을 사용할 때 은닉노드수, 가중치모수, 학습률 및 학습반복회수가 중요한 모수이다. 본 논문에서는 유전자 알고리즘을 사용하여 가중치 감소 신경망의 중요한 모수들을 자동으로 최적 화하는 방법을 제안하고 결과적으로 가중치감소 신경망을 자동 학습하는 방법을 설명한다. 그리고 다른 함수추정 방법들과 자동 학습된 가중치 감소 신경망을 비교 분석한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001390036