메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제22권 제3호
발행연도
2011.6
수록면
459 - 466 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 독립적으로 수행된 연구결과를 합쳐서 일반적인 결론을 도출하는 메타분석을 위한 로버스트 계층적 베이지안 모형을 고려한다. 사전정보가 정규분포를 따른다는 가정 대신 정규분포의 척도혼합을 사용하여 정규분포보다 더 두꺼운 꼬리를 가지는 사전분포를 사용한다. 나아가 개별 분석의 분산이 알려져 있지 않은 경우를 계층적 베이지안 모형에 포함하여 메타분석을 수행하고자 한다. 깁스 표집을 사용하여 추정값을 계산하고, 실제 자료를 사용하여 제안된 방법을 예시한다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001380856