메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Abdulhafiz Chesof (King Mongkuts Institute of Technology Ladkrabang) Sungwan Boksuwan (King Mongkuts Institute of Technology Ladkrabang) Sumit Panaudomsup (King Mongkuts Institute of Technology Ladkrabang) Thepjit Cheypoca (King Mongkuts Institute of Technology Ladkrabang)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2017
발행연도
2017.10
수록면
621 - 624 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The objective is to evaluate the performance of an explicit model predictive control for controlling the room temperature actuated by the on-off air conditioner to minimize the energy usage by reducing the working time of a compressor. There are a lot of on-off air conditioners already installed in the educational building in Thailand. To replace all of those by the inverter air conditioner or HVAC system, the high investment cost is required. Therefore, the on-off air conditioners continue to work in such building. The effective solution may be the low cost control unit which is simple like a remote control. The method is to design the remote control embedded by the temperature sensor and the explicit model predictive control that is based on the off-line optimization. The experiment is performed in the laboratory room with dimension 4x7x3.5 m (WxLxH) actuated by Saijo Denki 18,320 Btu on-off air conditioner. The experimental results reveal that the temperature reaches the desired value 25 degree Celsius within 10 minute and keeps fluctuating between 23 and 26 degree Celsius. The working time of compressor is reduced 33.33 %. The result shows that the explicit model predictive control is effective for the remote control application in terms of the implementation and energy saving.

목차

Abstract
1. INTRODUCTION
2. MODELING AND SYSTEM IDENTIFICATION
3. EXPLICIT MODEL PREDICTIVE CONTROL FORMULATION
4. EXPERIMENTS AND DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001426777