메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hakjoo Kim (Chungbuk National University) Seok-Cheol Kee (Chungbuk National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,947 - 1,951 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes an adaptive model predictive control algorithm for autonomous lateral control using a neural network approximator. The model predictive control algorithm can ensure reasonable control performance by reflecting the physical constraints of the system and deriving the optimal control input. However, disturbances and model uncertainties during the prediction process of the model predictive controller can have a negative influence on the control performance. To overcome these limitations, this study proposes the estimation of the weight matrix of the model predictive controller using a neural network approximator. A prediction model based on the lateral error dynamics model is designed to formulate the model predictive control, where the designed prediction model is reflected in the objective function to minimize it and derive optimal inputs satisfying the constraints. The estimated weighting matrices using a radial basis function neural network, are then incorporated into the model predictive controller. The performance evaluation of the proposed control algorithm was conducted using a double lane change scenario. The proposed control algorithm was designed in the Matlab/Simulink environment, and CarMaker simulator-based performance evaluation was performed.

목차

Abstract
1. INTRODUCTION
2. LATERAL ERROR DYNAMICS MODEL
3. ADAPTIVE MODEL PREDICTIVE CONTROL USING NEURAL NETWORK APPROXIMATOR
4. PERFORMANCE EVALUATION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266740