메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Chungho Lee (Ulsan National Institute of Science and Technology (UNIST)) Jae-Hwan Kang (Ulsan National Institute of Science and Technology (UNIST)) Sung-Phil Kim (Ulsan National Institute of Science and Technology (UNIST))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2017
발행연도
2017.10
수록면
1,115 - 1,119 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Biometric technology based on electroencephalography (EEG) identifies individuals by using personal characteristics in human brainwaves. This study aims to evaluate EEG features and channels for biometrics and to propose a methodology that selects the optimal features to discriminate individuals. Thirty healthy subjects participated in the study. While recording EEG signals from fourteen channels, subjects were asked to relax and keep eyes closed for two minutes. To evaluate intra-individual variability, we recorded EEG ten times for each subject across different days to reduce any within-day effect. From each channel, eight EEG features were calculated including alpha/beta power ratio, alpha/theta power ratio, beta/theta power ratio, median frequency, PSD entropy, permutation entropy, sample entropy, and maximum Lyapunov exponents. These features were evaluated by three feature selection algorithms based on Fisher score, reliefF, and information gain, respectively. A linear discriminant analysis (LDA) classifier along with a leave-oneout cross validation method discriminated self against others using the selected features. The best feature set was found to be composed of 23 features highly ranked on Fisher scores, which yielded a 18.56% half total error rate. In addition, EEG channels located on occipital and right temporal areas appeared to most contribute to authenticate individuals.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. RESULTS
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001427592