메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lei Wen (The Academy of Baoding Low-Carbon Development) Zeyang Ma (North China Electric Power University) Yue Li (North China Electric Power University) Qiao Li (North China Electric Power University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제22권 제4호
발행연도
2017.12
수록면
407 - 416 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
CO₂ emission is increasingly focused by public. Beijing and Tianjin are conceived to be a new economic point of growth in China. However, both of them are suffering serious environmental stress. In order to seek for the effect of socioeconomic factors on the CO₂ emission of this region, a novel methodology –symbolic regression– is adopted to investigate the relationship between CO₂ emission and influential factors of Beijing and Tianjin. Based on this method, CO₂ emission models of Beijing and Tianjin are built respectively. The models results manifested that Beijing and Tianjin own different CO₂ emission indicators. The RMSE of models in Beijing and Tianjin are 255.39 and 603.99, respectively. Further analysis on indicators and forecast trend shows that CO₂ emission of Beijing expresses an inverted-U shaped curve, whilst Tianjin owns a monotonically increasing trend. From analytical results, it could be argued that the diversity rooted in different development orientation and the mixture of different natural and industrial environment. This research further expands the investigation on CO₂ emission of Beijing and Tianjin region, and can be used for reference in the study of carbon emissions in similar regions. Based on the investigation, several policy suggestions are presented.

목차

ABSTRACT
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions and Policy Implications
References

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-539-001524188