메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Won-Yeol Kim (Korea Maritime and Ocean University) Jong-Chan Kim (Kyungbuk College) Dong-Hoan Seo (Korea Maritime and Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제41권 제10호
발행연도
2017.12
수록면
1,018 - 1,023 (6page)
DOI
10.5916/jkosme.2017.41.10.1018

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The amount of heat applied to the welding part by the movement of the welding torch has a predetermined standard per unit area, according to the base material and the welding method. When the heat input is large, the cooling rate is slowed and the ductility is increased; however, as the hardness is decreased, the welding part is easily deformed by the residual stress. Further, if the amount of heat input is small, the weld zone tends to separate due to the lack of welding. Therefore, for a constant amount of heat to be applied to the weld, it is essential to measure the real-time moving speed, direction, and angle of the torch during welding. In this paper, we propose welding and weaving speed estimation system using an acceleration sensor based on the support vector machine (SVM). To measure the welding and weaving speeds, we analyze the obtained signal from the acceleration sensor in the frequency domain, based on the fast Fourier transform (FFT), and derive the feature vector. Based on this, we apply the SVM to improve the accuracy of low speed measurement by classifying the characteristics of the measurement signal according to the speed change. To verify the validity, we analyze the accuracy and error of the proposed algorithm according to the change in welding and weaving speed. The simulation result shows that the proposed method achieves an average positioning accuracy of 93.36% and a maximum positioning error of 0.3834 m.

목차

Abstract
1. Introduction
2. Related Theory
3. Proposed Algorithm
4. Experiment Result
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-559-001742979