메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전유희 (경희대학교) 구철모 (경희대학교)
저널정보
한국서비스경영학회 서비스경영학회지 서비스경영학회지 제18권 제5호
발행연도
2017.12
수록면
133 - 163 (31page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
As the use of social network service has brought the change in the fundamental way of tourism behavior and tourist information search recently, the user"s needs for social curation which selects valuable information and provides are on the increase, reflecting this phenomenon. Hashtag is to maximize the role of social curation and the purpose of this research is to analyze and verify the causal structure of tourist information search empirically by applying hashtag based on social curation that creates new paradigm in information retrieval.
In this study, uses and gratifications theory and SNS fatigue were applied to examine the trade-off relationship between positive and negative aspects of hashtag use for acquiring the tourism information. The questionnaire was designed based on various theoretical backgrounds and literature reviews, and the datas were collected from those who search and collect tourism information by using hashtag in SNS. Online survey was carried out from April 10th to 17th, 2017 to collect samples. In total, 378 valid copies among 398 were used for the analysis. The purpose of this research is to apply the hashtag, which is a core function of social curation, which plays a crucial role in shaping various commercial and trends, such as tourist attractions and places, when tourism decision making using SNS forms a new paradigm of tourism behavior. This research investigates to review the trade-off relationships between the use and gratification theory and the positive/negative aspects of the SNS fatigue factors, and provides academic and practical implications.

목차

Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구모델 및 가설설정
Ⅳ. 연구방법
Ⅵ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-324-001663127