메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김동우 (KB금융지주)
저널정보
한국경영과학회 경영과학 經營科學 第34卷 第4號
발행연도
2017.12
수록면
77 - 95 (19page)
DOI
10.7737/KMSR.2017.34.4.077

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study investigates the influences of diverse sources of borrower information on the decision-making of both borrowers and lenders and actual loan repayment performance, especially focusing on language use factors, a sort of important atypical information in peer-to-peer (P2P) lending market. To this end, I collect data for 33,650 individual loan requests from Moneyauction, the largest and oldest P2P lending platform in South Korea, and analyze the determinants of loan cancellation and funding success adopting binary logistic regression models, and try to use the opportunism theory, trust building theory, and the cognitive load theory for interpretation. In addition, this study suggests prediction models assessing whether potential borrowers will withdraw their loan requests on the way of bidding process or not and whether loan requests will be fully funded or not.
The research findings show that the borrower’s demographic traits (e.g., gender, age, and marital status) and linguistic style (e.g., word count, number of money words, and causal words) have as much of an influential effect on participants’ decision making (i.e., loan request cancellation and funding success) as do financial and loan request profiles (e.g., credit grade, loan amount, interest rate, and duration), which are generally considered in credit assessments done by conventional financial institutions. This study also suggests that participants’ decision making is significantly influenced by language factors including description length and the frequency of words expressing financial situation and causal relation.

목차

Abstract
1. 서론
2. 문헌 연구
3. 이론 및 가설
4. 분석 방법
5. 분석 결과
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-325-001785489