메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김시형 (강원대학교) 이현구 (강원대학교) 김학수 (강원대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.45 No.2
발행연도
2018.2
수록면
134 - 140 (7page)
DOI
10.5626/JOK.2018.45.2.134

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
채팅 시스템은 사람의 말을 기계가 이해하고 적절한 응답을 하는 시스템이다. 채팅 시스템은 사용자의 간단한 정보 검색 질문에 대답해야 하는 경우가 있다. 그러나 기존의 생성 채팅 시스템들은 질의응답에 필요한 정보인 지식 개체(트리플 형태 지식에서의 주어와 목적어)의 임베딩을 고려하지 않아 발화에 나타나는 지식 개체가 다르더라도 같은 형태의 답변이 생성되었다. 본 논문에서는 생성 기반 채팅시스템의 질의응답 정확도를 향상시키기 위한 지식 임베딩 방법을 제안한다. 개체와 유의어의 지식 임베딩을 위해 샴 순환 신경망을 사용하며 이를 이용해 주어와 술어를 인코딩 하고 목적어를 디코딩하는 sequence-to-sequence 모델의 성능을 향상 시켰다. 자체 구축한 채팅데이터를 통한 실험에서 제안된 임베딩 방법은 종래의 합성곱 신경망을 통한 임베딩 방법 보다 12.48% 높은 정확도를 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 샴 신경망을 활용한 개체 임베딩 모델
4. 개체 임베딩 검증을 위한 목적어 생성 모델
5. 실험
6. 결론 및 향후연구
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001778499