메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
小野里恵 (新羅大学校)
저널정보
대한일어일문학회 일어일문학 日語日文學 第77輯
발행연도
2018.2
수록면
163 - 179 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Japanese is a unique language, not least because it makes use of three different types of letters, i.e. Hiragana, Katakana and Chinese characters. In many cases, each letter does not only have its own word referring to the same concept, e.g. 「嫉妬」「やきもち」「ジェラシー」for jealousy, but also could possibly embarrass speakers and writers if they do not discern the subtle but distinct nuances among the seemingly same words. The aim of this paper is to help avoid such confusing and baffling cases, by presenting key vocabulary, its usage and precautions. Of equally significance of this article, however, is its focus on a learning concept called "collocation." Rather than randomly studying vocabulary and expressions one by one, it is more instructive and productive to take note of the "pairing" or "coupling" of words. As is the case with Japanese language, Korean has purely native vocabulary as well as loanword widely used in daily conversation. This also contributes to the existence of several words referring to a similar or the same notion, which is another similarity between Korean and Japanese language. With this phenomenon in mind, this article chooses 10 commonly used synonyms in Japanese language and analyzes their differences, first semantically and then in terms of collocation (based on the connection between the given words and postpositions and verbs. It is followed by the comparison of 10 synonyms of Korean and Japanese languages in light of the relevant issues in language education. In conclusion, it brings attention to an effective education method for the selected 10 words.

목차

〈Abstract〉
1. はじめに
2. 各語種の概念
3. 日本語の類語
4. 韓国語の類語
5. 類語の教育方案
6. まとめ
参考文献
REFERENCES

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-830-001782902