메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전은돈 (Korea Research Institute on Climate Change) 정영선 (Korea Institute of Civil Engineering and Building Technology) 윤성훈 (Namseoul Univ.)
저널정보
한국생태환경건축학회 KIEAE Journal KIEAE Journal Vol.18 No.1(Wn.89)
발행연도
2018.2
수록면
91 - 96 (6page)
DOI
10.12813/kieae.2018.18.1.091

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
Purpose: The purpose of this study is to present basic data for achieving GHG(greenhouse gas) reduction targets through the analysis of accurate GHG emissions and emission characteristics of the building sector. Method : In order to estimate accurate GHG emissions, both direct emissions from fossil fuels and indirect emissions from the use of electricity are considered. In addition, index decomposition analysis was conducted to analyze the characteristics of GHG emissions from the residential and commercial sectors. Result : Estimation of GHG emissions, including indirect emissions by electricity, showed 61.8 million ton CO2eq in residential and 65.1 million ton CO2eq in commercial sector. On the other hand, it was revealed through index decomposition analysis that, the activity effect(total floor area) and the energy-mix effect(composition of energy consumption by fuel) were found to increase GHG emissions, while the intensity effect(total energy consumption per unit area) decrease GHG emissions. Moreover, it was analyzed that it is effective to reduce electric energy consumption and convert it to an energy source with a relatively low emission factor in order to reduce GHG emissions in the building sector. In particular, in the commercial sector, efforts to improve energy efficiency(the intensive effect) are considered to be more effective to decrease in GHG emissions.

목차

ABSTRACT
1. 서론
2. 분석 방법
3. 건물부문 온실가스 배출 현황 및 특성 분석
4. 결론
Reference

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-610-001808354