메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조익성 (경운대학교) 권혁숭 (부산대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제22권 제2호
발행연도
2018.2
수록면
233 - 242 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
조기심실수축(Premature Ventricular Contraction) 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지 이론, Support Vector Machine 등과 같은 비선형 방법이 주로 사용되어 왔다. 이러한 대부분의 방법들은 데이터의 가공 및 연산이 복잡하다. 이러한 문제점을 극복하기 위해서 최적의 R파를 검출하고 이를 통해 R피크 기반의 특징점만을 정확하게 검출함으로써 최소한의 연산량으로 PVC를 분류할 수 있는 알고리즘이 필요하다. 따라서 본 연구에서는 전처리를 통해 잡음이 제거된 심전도 신호에서 최적 문턱치에 따른 R파를 검출하고, RR간격과 R피크 패턴을 추출한다. 이후 RR간격과 R피크 패턴에 따라 PVC를 분류하였다. 제안한 방법의 우수성을 입증하기 위해 PVC가 30개 이상 포함된 MIT-BIH 9개의 레코드를 대상으로 한 R파의 평균 검출율은 99.02%의 성능을 나타내었으며, PVC 부정맥은 각각 94.85%의 평균 분류율을 나타내었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안한 기법
Ⅲ. 실험결과 및 고찰
Ⅳ. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001807491