메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Min-Ah Cheon (Korea Maritime and Ocean University) Chang-Hyun Kim (Electronics and Telecommunications Research Institute) Ho-Min Park (Korea Maritime and Ocean University) Jae-Hoon Kim (Korea Maritime and Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제42권 제2호
발행연도
2018.2
수록면
106 - 113 (8page)
DOI
10.5916/jkosme.2018.42.2.106

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Named entities (NEs) are words or phrases that are the referent of proper nouns with distinct meanings, such as a person (PER), location (LOC), or organization (ORG). Named entity recognition (NER) is a task that aims to locate and classify NEs in text into pre-defined categories such as PER, LOC, and ORG. NER is a well-studied area in natural language processing. Nevertheless, multilingual NER tasks that treat various languages in different language families with the same architecture are rarely investigated. In this paper, we discuss an NER system designed to deal with multiple languages. For our experiments, we develop Korean and Chinese NER systems. The experimental results show that the overall performance of the system in terms of the F-measure is 73.06% (Korean) and 40.67% (Chinese). Concurrently, the performance of NE detection has an accuracy of more than 94% for both Korean and Chinese. We apply the NER system conceptually for marine term extraction because the term extraction is similar to NER in that it detects words or phrases with specific meanings used in a particular context.

목차

Abstract
1. Introduction
2. Named Entity Recognition Overview
3. Deep Learning Model for Entity Recognition
4. Performance Evaluation
5. Discussion and Application: Marine Term Extraction
6. Conclusion
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0