메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이윤정 (경희대학교) 이지아 (경희대학교)
저널정보
한국성인간호학회 성인간호학회지 성인간호학회지 제30권 제3호
발행연도
2018.6
수록면
301 - 313 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Purpose: Although post-stroke sensory disorder is different from post-stroke pain, it is often considered as central pain or overlooked in the clinical field. The purposes of this study were to develop the nursing algorithm for stroke patients with sensory disorder and examine its effect. Methods: The study used a methodological design to develop the nursing algorithm and a pretest-posttest design to examine its effect in stroke patients. The algorithm was developed through the ADDIE model (Analysis, Design, Development, Implementation, and Evaluation) using systematic review, expert panel interview, and patient interview. The algorithm was applied to 51 ischemic stroke patients experiencing sensory disorder at subacute stage by 10 nurses in a university hospital in Seoul city, Korea. Results: The contents of the algorithm included inclusion and exclusion criteria for relevant patients, assessment tool developed in this study, and the intervention (non-pharmacological and pharmacological) process based on the assessment results. The assessment tool and the intervention process had acceptable inter-rater reliability with Cohen’s Kappa .82 and .94, respectively. The scores of sensory disorder decreased from 2.71 to 0.51 with the algorithm application in 51 patients. Conclusion: The nursing algorithm for sensory disorder in stroke patients improved the symptoms and can be used conveniently by clinical nurses. Using this algorithm, nurses can provide relevant care for stroke patients with stiff, cool, obtuse, or vibrating sensors that cause insomnia, anorexia, and physical functional decline.

목차

서론
연구방법
연구결과
논의
결론 및 제언
REFERENCES

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-512-002232180