메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한교통학회 대한교통학회 학술대회지 대한교통학회 제45회 학술발표회
발행연도
2004.2
수록면
37 - 76 (40page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Each micro-simulation model requires a parameter set to be defined, a priori, and this set allows the modeler to model the supply characteristics, demand characteristics, and their interaction. The proper selection of the parameters is important because they control the interaction among the drivers, vehicles, and the roadway environment systems. While the use of traffic micro-simulation models has become widespread, there has been little research on the methodology for calibrating the parameter set. The main reasons for this are a paucity of available data, the cost of data collection, and a lack of systematic calibration methodology. The recent developments in ITS have resulted in the deployment of a number of data collection systems. The archived data from these systems provide more opportunities to calibrate the micro-simulation models more accurately. An automatic calibration methodology for micro-simulation models was developed in order to select the “best" parameter set based on observed ITS data and optimization algorithms. The proposed methodology was designed to apply to any traffic micro-simulation model. In this research, the TRANSIMS and CORSIM models were employed because they both capture the details of individual vehicles, but they are based on different traffic flow theories: namely, cellular automata theory and car-following theory, respectively. The automatic calibration methodology was implemented using the PERL language for the PC platform (CORSIM) and the AWK language for the Unix platform (TRANSIMS).

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-053-003253925