메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한교통학회 대한교통학회지 대한교통학회지 제19권 제6호
발행연도
2001.12
수록면
65 - 73 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
교통량이 시간의 흐름과 관련이 있는 시계열 데이터라는 개념을 기초로 교통량 패턴을 시계열 분석을 사용하여 분해해 보고자 하였다. 교통량 패턴은 추세치(T)와 계절변동(S), 주기변동(C), 그리고 불규칙변동(I)으로 구분할 수 있었는데, 본 연구에서는 불규칙변동을 기상요인을 통해 설명하려는 시도를 하였다. 왜냐하면 교통의 주체인 사람들 행태의 특성상 기상의 변화와 관련이 깊다고 판단을 내렸기 때문이었다. 기상요인으로는 일우량, 일조량, 풍속, 주야율, 강설량, 기온 등 여러 가지가 있지만 교통량의 변화와 가장 관련이 깊다고 여겨지는 일우량과 최저기온을 이용하였다. 일단 시계열 성분을 분해하고 나면 이를 이용하여 AADT를 추정하게 되는데, 추정의 결과를 비교하기 위해 AADT 추정방법을 두 가지로 구분하였다. 즉, 기상요인을 사용했을 경우와 그렇지 않을 경우로 나누어 결과를 살펴보았다. 추정 결과를 비교하는 척도로는 RMSE와 U-test를 사용하였다. 결과를 보면 불규칙변동요인을 그대로 사용했을 때보다, 기상요인을 결합한 불규칙변동요인을 사용했을 때 더 추정력이 좋았다. 이것은 각 조사지점의 RMSE와 U-test값을 구한 후 그 지점의 AADT로 나누어 준 결과를 보고 알 수 있었다. 이 연구를 통해 우리는 불규칙변동요인 이용방법의 중요성에 대해 한번 더 생각해 보게 된다. 즉 그것을 설명하는 방법에 의해 기존보다 더 나은 모형을 얻을 수도 있다는 결론에 이르게 된다는 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-053-003368154