메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한교통학회 대한교통학회지 대한교통학회지 제20권 제6호
발행연도
2002.12
수록면
59 - 68 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
도로의 설계 및 운영 등에 필요한 연평균 일 교통량은 365일 조사에 의한 것이 아닌 단기간 조사된 교통량을 사용하는 것으로써 이를 추정하려는 연구는 이전부터 있어왔다. 본 연구에서는 기존 연구를 바탕으로 이 AADT추정의 방법을 개선시키고자 하였다. 먼저 그룹간의 차이를 뚜렷이 보여줄 수 있는 변수를 찾기 위해 그룹의 수를 변화시켜가며 각 그룹의 시간변동요인들(전체, 주중, 토요일, 일요일, 주중-토요일, 주중-일요일)의 값을 살펴보아 그 차이가 가장 뚜렷한 변동요인을 주중-일요일의 시간변동 요인으로 선정하였다. 그 다음 월변동요인만을 사용하여 상시조사지점을 clustering하였다. 그룹간의 시간변동요인의 차이를 가장 크게 하는 것을 원칙으로 군집분석을 한 결과 10개의 그룹으로 묶을 수 있었다. 선정된 주중-일요일의 시간변동요인을 사용하여 판별분석과 신경망을 통한 그룹할당을 했다. 신경망의 적중률이 판별분석의 경우보다 훨씬 좋았고, RMSE, U-test 결과도 더 좋았다. 결과를 전체적으로 살펴보면, 본 연구에서 사용한 방법(월변동요인만을 사용하여 군집분석한 후, 각 그룹에서 월별로 요일변동요인을 구해 적용한 AADT 추정)의 결과가 이전 연구인 월변동과 요일변동을 이용한 AADT추정의 결과보다 훨씬 좋았다. 그리고 그룹할당의 변수를 주중-일요일의 시간변동요인으로 달리하였을 때, 신경망의 경우 그룹할당의 적중률이 더 높아지는 것을 볼 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-053-003369151