메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gun-hyo No (LIG Nex1) Yong-hee Hong (LIG Nex1) Jin-ho Park (LIG Nex1) Ho-jin Jhee (LIG Nex1)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제23권 제7호(통권 제172호)
발행연도
2018.7
수록면
81 - 90 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, reducing lense Vignetting effect and adaptive learning rate method are proposed to complement Scribner’s neural network for nuc algorithm which is the effective algorithm in statistic SBNUC algorithm. Proposed reducing vignetting effect method is updated weight and bias each differently using different cost function. Proposed adaptive learning rate for updating weight and bias is using sobel edge detection method, which has good result for boundary condition of image. The ordinary statistic SBNUC algorithm has problem to compensate lense vignetting effect, because statistic algorithm is updated weight and bias by using gradient descent method, so it should not be effective for global weight problem same like, lense vignetting effect.
We employ the proposed methods to Scribner’s neural network method(NNM) and Torres’s reducing ghosting correction for neural network nuc algorithm(improved NNM), and apply it to real-infrared detector image stream. The result of proposed algorithm shows that it has 10dB higher PSNR and 1.5 times faster convergence speed then the improved NNM Algorithm.

목차

Abstract
I. Introduction
II. Preliminaries
III. improved NNM SBNUC
IV. The Proposed Scheme
V. Conclusions
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-003361130