메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강민철 (고려대학교) 김휘강 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제28권 제4호
발행연도
2018.8
수록면
847 - 857 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
악성코드의 수가 가파르게 증가하면서 기업 및 공공기관, 금융기관, 병·의원 등을 타깃으로 한 사이버 공격 피해사례가 늘어나고 있다. 이러한 흐름에 따라 학계와 보안 업계에서는 악성코드 탐지를 위한 다양한 연구를 진행하고 있다. 최근 들어서는 딥러닝을 비롯해 머신러닝 기법을 적용하는 형태의 연구가 많이 진행되는 추세다. 이 중 합성곱 신경망(CNN: Convolutional Neural Network), ResNet 등을 이용한 악성코드 분류 연구의 경우에는 기존의 분류 방법에 비해 정확도가 크게 향상된 것을 확인할 수 있다. 그러나 타깃 공격의 특징 중 하나는 사용된 악성코드가 불특정 다수를 상대로 광범위하게 퍼뜨리는 형태가 아닌, 특정 대상을 타깃으로 한 맞춤형 악성코드라는 점이다. 이러한 유형의 악성코드는 그 수가 많지 않기 때문에 기존에 연구되어온 머신러닝이나 딥러닝 기법을 적용하기에 한계가 있다. 본 논문은 타깃형 악성코드와 같이 샘플의 양이 부족한 상황에서 악성코드를 분류하는 방법에 대해 다루고 있다. 메모리가 추가된 신경망(MANN: Memory Augmented Neural Networks) 모델을 이용하였고 각 그룹별 20개의 소량 데이터로 구성되어 있는 악성코드 데이터셋에 대해 최대 97%까지 정확도로 분류할 수있음을 확인하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 배경 지식
IV. 제안하는 방법
V. 실험 및 결과
VI. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-003408236