메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서영민 (세종대학교) 한종기 (세종대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제23권 제5호
발행연도
2018.9
수록면
669 - 681 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 고해상도 자궁경부암 세포사진을 CNN(Convolution Neural Network)을 통해 효과적으로 인식 및 분류하는 방법을 소개한다. 이때 고려되는 세포의 종류는 Ascus, Inflammation, RCC, Normal 로 네 가지가 있다. 본 논문에서는 먼저 기존의 고해상도 이미지를 분류하는 알고리즘을 소개하고, 이 방법을 이용하여 고해상도 세포사진을 분류하는 과정에서 어떤 정보의 손실이 발생하는지 분석한 후, 이를 해결하기 위한 방법을 제시한다. 이를 위해서 본 논문에서 제안하는 학습 모델에서는 dilated convolution을 이용하여 고해상도 사진의 정보의 손실을 최소한으로 줄임과 동시에 학습속도 빠르게 하는 알고리즘을 제시한다. 또한 이미지 전처리 과정으로 임계치를 사용함으로써 암세포를 판단하는데 혼란을 줄 수 있는 부분을 제거함으로써 인식률을 향상시킨다. 본 논문에서 제시되는 실험 결과를 통해, 제안한 알고리즘이 기존 기술보다 높은 인식률을 제공하는 것을 확인할 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존의 CIFAR-10을 이용한 세포사진 분류
Ⅲ. Dilated Convolution
Ⅳ. 제안하는 CNN 구조
Ⅴ. 실험 결과
Ⅵ. 결론
참고문헌 (References)

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-567-003588531