메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Karam Park (Seoul National University) Nam Ik Choa (Seoul National University)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제28권 제7호
발행연도
2023.12
수록면
875 - 887 (13page)
DOI
10.5909/JBE.2023.28.7.875

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
There have been many works on single image super-resolution (SISR) using convolutional neural networks (CNNs), researching on network architecture, loss function, applications, etc. However, very few have studied the modification or adaptation of the convolution operation, which is the fundamental element of CNN. In most CNN-based methods, the filter weights do not change at the inference phase, i.e., filter parameters are fixed regardless of the input and its regional characteristics. We note that this conventional approach is parameter-efficient but may not be optimal in performance due to its inflexibility to regionally different input statistics. To tackle this problem, we propose a novel convolution operation named Adaptive Convolution, which has content-specific characteristics. The proposed method adaptively adjusts filter weights according to the regional characteristics of the input with the help of an attention mechanism. We also introduce a kernel fragmentation method, which enables the efficient implementation of the Adaptive Convolution. We embed our new convolutional layer into several well-known SR networks and show that it enhances their performances while requiring a small number of additional parameters. Also, our method can be used along with other attentions that manipulate the features, further increasing the performance.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Related Works
Ⅲ. Adaptive Convolution
Ⅳ. Experimental Results
Ⅴ. Conclusion
References

참고문헌 (50)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088527695