메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mustafa Eren Yıldırım (Bahcesehir University) Ömer Faruk Ince (Kyungsung University) Yücel Batu Salman (Bahcesehir University) Ege Sadıç (Bahcesehir University) Jang-Sik Park (Kyungsung University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
656 - 660 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper addresses an original problem. It presents an approach for the recognition of single-land countries on outline satellite images by using Beam Angle Statistics (BAS). For this purpose, we have created an image dataset. After converting the RGB input images to binary and applying the necessary preprocessing steps, a single contour is extracted from each image by Canny Edge detector. In order to represent each county as a one-dimensional vector, BAS feature is extracted from contour point vector. Thus, each country has its unique feature vector and is independent from rotation, scale and is also robust to image deformation. For comparison of the one-dimensional vectors, Dynamic Time Warping (DTW) is used. In experiments, we had Additive White Noise (AWN) added to test images which are scaled with factors 1.5, 0.5, 0.25 and are also iteratively rotated by 45°. Benchmarking has been conducted between the proposed algorithm, Scale Invariant Feature Transform (SIFT) and Oriented Fast Rotated Brief (ORB) features. Results show that BAS feature is the most robust feature against rotation followed by ORB and then SIFT. In case of upscale, BAS outperforms the others. In downscale versions, SIFT outperforms others and ORB comes as last.

목차

Abstract
1. INTRODUCTION
2. PROPOSED METHOD
3. EXPERIMENTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003538890