메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
781 - 786 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Tracking an object under a noisy environment is difficult especially when there exist unknown parameters that affect the object’s behavior. In the case of a high-speed ballistic vehicle, the trajectory of the ballistic vehicle is affected by the change of atmospheric conditions as well as the various parameters of the object itself. To filter these latent factors of the dynamics model, this paper proposes a black-box Expectation-Maximization algorithm to estimate the latent parameters for enhancing the accuracy of the trajectory tracking. The Expectation step calculates the likelihood of the observation by the Extended Kalman Smoothing that reflects the forward-backward probability combination. The Maximization step optimizes the unknown parameters to maximize the likelihood by the Bayesian optimization with Gaussian process. Our simulation experiment results show that the error of tracking position of the ballistic vehicle reduced when there exist much noise in the observations, and some important parameters are unknown.

목차

Abstract
1. INTRODUCTION
2. PREVIOUS RESEARCH
3. MODEL OF HIGH VELOCITY VEHICLES
4. METHOD
5. RESULT
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003539079